1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
|
; The multiboot standard does not define the value of the stack pointer register
; (esp) and it is up to the kernel to provide a stack. This allocates room for a
; small stack by creating a symbol at the bottom of it, then allocating 16384
; bytes for it, and finally creating a symbol at the top. The stack grows
; downwards on x86. The stack is in its own section so it can be marked nobits,
; which means the kernel file is smaller because it does not contain an
; uninitialized stack. The stack on x86 must be 16-byte aligned according to the
; System V ABI standard and de-facto extensions. The compiler will assume the
; stack is properly aligned and failure to align the stack will result in
; undefined behavior.
section .bss
align 16
stack_bottom:
resb 16384 ; 16 KiB
stack_top:
; The linker script specifies _start as the entry point to the kernel and the
; bootloader will jump to this position once the kernel has been loaded. It
; doesn't make sense to return from this function as the bootloader is gone.
; Declare _start as a function symbol with the given symbol size.
section .text
global idt_load
extern idt_ptr
idt_load:
lidt [idt_ptr]
ret
%macro isr 1-*
%rep %0
isr_%+%1:
cli
push qword 0
push qword %1
jmp isr_common
%rotate 1
%endrep
%endmacro
%macro isr_err 1-*
%rep %0
isr_%+%1:
cli
push qword %1
jmp isr_common
%rotate 1
%endrep
%endmacro
isr 0, 1, 2, 3, 4, 5, 6, 7, 9, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 31
isr_err 8, 10, 11, 12, 13, 14, 17, 21, 29, 30
isr 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47
extern interrupt_handler
isr_common:
push rdi
mov rdi, [rsp + 8]
push rsi
mov rsi, [rsp + 24]
push rax
push rdx
push rcx
push r8
push r9
push r10
push r11
call interrupt_handler
pop r11
pop r10
pop r9
pop r8
pop rcx
pop rdx
pop rax
pop rsi
pop rdi
add rsp, 16
iretq
global isr_table
isr_table:
%assign i 0
%rep 48
dq isr_%+i
%assign i i+1
%endrep
global toggle_interrupts
toggle_interrupts:
cmp rdi, 0x0
je .disable
sti
ret
.disable
cli
ret
global start:function (start.end - start)
start:
; The bootloader has loaded us into 32-bit protected mode on a x86
; machine. Interrupts are disabled. Paging is disabled. The processor
; state is as defined in the multiboot standard. The kernel has full
; control of the CPU. The kernel can only make use of hardware features
; and any code it provides as part of itself. There's no printf
; function, unless the kernel provides its own <stdio.h> header and a
; printf implementation. There are no security restrictions, no
; safeguards, no debugging mechanisms, only what the kernel provides
; itself. It has absolute and complete power over the
; machine.
mov rsp, stack_top
; To set up a stack, we set the esp register to point to the top of our
; stack (as it grows downwards on x86 systems). This is necessarily done
; in assembly as languages such as C cannot function without a stack.
;mov rsp, stack_top
; This is a good place to initialize crucial processor state before the
; high-level kernel is entered. It's best to minimize the early
; environment where crucial features are offline. Note that the
; processor is not fully initialized yet: Features such as floating
; point instructions and instruction set extensions are not initialized
; yet. The GDT should be loaded here. Paging should be enabled here.
; C++ features such as global constructors and exceptions will require
; runtime support to work as well.
; Enter the high-level kernel. The ABI requires the stack is 16-byte
; aligned at the time of the call instruction (which afterwards pushes
; the return pointer of size 4 bytes). The stack was originally 16-byte
; aligned above and we've since pushed a multiple of 16 bytes to the
; stack since (pushed 0 bytes so far) and the alignment is thus
; preserved and the call is well defined.
; note, that if you are building on Windows, C functions may have "_" prefix in assembly: _kernel_main
mov rax, 0x1
cpuid
test edx, 1 << 25
jz .no_sse
mov rax, cr0
and ax, 0xfffb
or ax, 0x2
mov cr0, rax
mov rax, cr4
or ax, 3 << 9
mov cr4, rax
.no_sse:
extern kernel_main
call kernel_main
; If the system has nothing more to do, put the computer into an
; infinite loop. To do that:
; 1) Disable interrupts with cli (clear interrupt enable in eflags).
; They are already disabled by the bootloader, so this is not needed.
; Mind that you might later enable interrupts and return from
; kernel_main (which is sort of nonsensical to do).
; 2) Wait for the next interrupt to arrive with hlt (halt instruction).
; Since they are disabled, this will lock up the computer.
; 3) Jump to the hlt instruction if it ever wakes up due to a
; non-maskable interrupt occurring or due to system management mode.
int 0
.hang: hlt
jmp .hang
.end:
section .end
global kernel_end
kernel_end:
|