Age | Commit message (Collapse) | Author |
|
These comments were a bit misleading:
- "GL_TEXTURE_2D == mutable": not really, imported non-external-only
DMA-BUFs would also use this target, but are not mutable.
- "Only affects target == GL_TEXTURE_2D": same here.
- "If imported from a wlr_buffer": not really, would be NULL if
imported from a shm wlr_buffer.
Adjust these comments to better reflect reality and adjust the check
in gles2_texture_update_from_buffer().
|
|
Let's us share more code with the other code path
|
|
Since wlr_gles2_buffer is now managing importing for us, there is
no reason for us to continue doing this.
|
|
We can get it from the buffer
|
|
We can double import a dmabuf if we use it as a texture target and
a render target. Instead, let's unify render targets and texture dmabuf
imports to use wlr_gles2_buffer which manages the EGLImageKHR
|
|
Why track the alpha here when we can already get that information
elsewhere?
|
|
Many files used to require wlr_matrix but no longer do.
|
|
|
|
This slightly improves type safety.
The culprits were found with:
git grep -E '\([a-z0-9_ ]+ \*\)\W?[a-z]'
|
|
This is a bit more type-safe.
|
|
Some formats like sub-sampled YCbCr use a block of bytes to
store the color values for more than one pixel. Update our format
table to be able to handle such formats.
|
|
|
|
We'll use this function from wlr_shm too.
Add some assertions, use int32_t (since the wire protocol uses that,
and we don't want to use 16-bit integers on exotic systems) and
switch the stride check to be overflow-safe.
|
|
|
|
|
|
This lets the renderer handle the wlr_buffer directly, just like it
does in texture_from_buffer. This also allows the renderer to batch
the rectangle updates, and update more than the damage region if
desirable (e.g. too many rects), so can be more efficient.
|
|
Whether a texture is opaque or not doesn't depend on the renderer
at all, it just depends on the source buffer. Instead of forcing
all renderers to implement wlr_texture_impl.is_opaque, let's move
this in common code and use the wlr_buffer format to know whether
a texture will be opaque.
|
|
These formats require EXT_texture_norm16, which in turn needs OpenGL
ES 3.1. The EXT_texture_norm16 extension does not support passing
gl_internalformat = GL_RGBA to glTexImage2D, as can be done for
formats available in OpenGL ES 2.0, so this commit adds a field to
wlr_gles2_pixel_format to provide a more specific internalformat
parameter to glTexImage2D.
|
|
They are never used in practice, which makes all of our flag
handling effectively dead code. Also, APIs such as KMS don't
provide a good way to deal with the flags. Let's just fail the
DMA-BUF import when clients provide flags.
|
|
|
|
This allows callers to specify the operations they'll perform on
the returned data pointer. The motivations for this are:
- The upcoming Linux MAP_NOSIGBUS flag may only be usable on
read-only mappings.
- gbm_bo_map with GBM_BO_TRANSFER_READ hurts performance.
|
|
|
|
Use our internal pixel format table to figure out whether an
imported DMA-BUF has alpha.
|
|
This allows use to remove all of our special wl_drm support code.
|
|
|
|
|
|
The wlr_egl functions are mostly used internally by the GLES2
renderer. Let's reduce our API surface a bit by hiding them. If
there are good use-cases for one of these, we can always make them
public again.
The functions mutating the current EGL context are not made private
because e.g. Wayfire uses them.
|
|
|
|
When importing a DMA-BUF wlr_buffer as a wlr_texture, the GLES2
renderer caches the result, in case the buffer is used for texturing
again in the future. When the wlr_texture is destroyed by the caller,
the wlr_buffer is unref'ed, but the wlr_gles2_texture is kept around.
This is fine because wlr_gles2_texture listens for wlr_buffer's destroy
event to avoid any use-after-free.
However, with this logic wlr_texture_destroy doesn't "really" destroy
the wlr_gles2_texture. It just decrements the wlr_buffer ref'count.
Each wlr_texture_destroy call must have a matching prior
wlr_texture_create_from_buffer call or the ref'counting will go south.
Wehn destroying the renderer, we don't want to decrement any wlr_buffer
ref'count. Instead, we want to go through any cached wlr_gles2_texture
and destroy our GL state. So instead of calling wlr_texture_destroy, we
need to call our internal gles2_texture_destroy function.
Closes: https://github.com/swaywm/wlroots/issues/2941
|
|
Make it so wlr_gles2_texture is ref'counted (via wlr_buffer). This
is similar to wlr_gles2_buffer or wlr_drm_fb work.
When creating a wlr_texture from a wlr_buffer, first check if we
already have a texture for the buffer. If so, increase the
wlr_buffer ref'count and make sure any changes made by an external
process are made visible (by invalidating the texture).
When destroying a wlr_texture created from a wlr_buffer, decrease
the ref'count, but keep the wlr_texture around in case the caller
uses it again. When the wlr_buffer is destroyed, cleanup the
wlr_texture.
|
|
This centralizes the wlr_texture initialization.
In future commits, more fields will need to get initialized.
|
|
We require the ext in the renderer init function.
|
|
The NULL check already exists in wlr_texture_destroy, no need to
duplicate it in each impl
|
|
|
|
The compositor shouldn't write to client buffers if the client
attaches a DMA-BUF to a wl_surface, then attaches a shm buffer.
Make gles2_texture_write_pixels return an error to prevent this
from happening.
|
|
This is unused in wlroots, and the use-cases for compositors are
pretty niche since they can access the original DMA-BUF via the
wlr_buffer.
|
|
|
|
|
|
|
|
|
|
If the stride is too small, the driver could end up segfaulting
(e.g. radeonsi segfaults in __memmove_sse2_unaligned_erms).
|
|
Mesa provides YUV shaders, and can import multi-planar YUV DMA-BUFs
as a single EGLImage. Remove the arbitrary limitation.
If the driver doesn't support importing YUV as a single EGLImage,
the import will fail and the result will be the same anyways.
|
|
Clamping texture coordinates prevents OpenGL from blending the left and
right edge (or top and bottom edge) when scaling textures with GL_LINEAR
filtering. This prevents visual artifacts like swaywm/sway#5809.
Per discussion on IRC, this behaviour is made default. Compositors that want
the wrapping behaviour (e.g. for tiled patterns) can override this by doing:
struct wlr_gles2_texture_attribs attribs;
wlr_gles2_texture_get_attribs(texture, &attribs);
glBindTexture(attribs.target, attribs.tex);
glTexParameteri(attribs.target, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(attribs.target, GL_TEXTURE_WRAP_T, GL_REPEAT);
glBindTexture(attribs.target, 0);
|
|
It can be surprising and unexpected that texture operations (such as
texture upload and import) change the current EGL context, especially
when it's done under-the-hood by wlroots in response to wl_surface
requests.
To prevent surprises, save and restore the previous EGL context.
|
|
These aren't used anymore.
|
|
We implicitly depended on this extension.
|
|
Move the global into wlr_gles2_renderer. This removes global state and
allows us to have multiple renderers with different GL loaders.
|
|
|
|
|
|
These functions are unused by compositors (see e.g. [1]) and prevent
wlr_gles2_texture from accessing wlr_gles2_renderer state. This is an
issue for proper teardown [2] and for accessing GLES2 extensions.
[1]: https://github.com/swaywm/wlroots/pull/1962#issuecomment-569511830
[2]: https://github.com/swaywm/wlroots/pull/1962
|