Copyright © 2014, 2015 Collabora, Ltd.
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice (including the next
paragraph) shall be included in all copies or substantial portions of the
Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
Following the interfaces from:
https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_image_dma_buf_import.txt
and the Linux DRM sub-system's AddFb2 ioctl.
This interface offers ways to create generic dmabuf-based
wl_buffers. Immediately after a client binds to this interface,
the set of supported formats and format modifiers is sent with
'format' and 'modifier' events.
The following are required from clients:
- Clients must ensure that either all data in the dma-buf is
coherent for all subsequent read access or that coherency is
correctly handled by the underlying kernel-side dma-buf
implementation.
- Don't make any more attachments after sending the buffer to the
compositor. Making more attachments later increases the risk of
the compositor not being able to use (re-import) an existing
dmabuf-based wl_buffer.
The underlying graphics stack must ensure the following:
- The dmabuf file descriptors relayed to the server will stay valid
for the whole lifetime of the wl_buffer. This means the server may
at any time use those fds to import the dmabuf into any kernel
sub-system that might accept it.
To create a wl_buffer from one or more dmabufs, a client creates a
zwp_linux_dmabuf_params_v1 object with a zwp_linux_dmabuf_v1.create_params
request. All planes required by the intended format are added with
the 'add' request. Finally, a 'create' or 'create_immed' request is
issued, which has the following outcome depending on the import success.
The 'create' request,
- on success, triggers a 'created' event which provides the final
wl_buffer to the client.
- on failure, triggers a 'failed' event to convey that the server
cannot use the dmabufs received from the client.
For the 'create_immed' request,
- on success, the server immediately imports the added dmabufs to
create a wl_buffer. No event is sent from the server in this case.
- on failure, the server can choose to either:
- terminate the client by raising a fatal error.
- mark the wl_buffer as failed, and send a 'failed' event to the
client. If the client uses a failed wl_buffer as an argument to any
request, the behaviour is compositor implementation-defined.
Warning! The protocol described in this file is experimental and
backward incompatible changes may be made. Backward compatible changes
may be added together with the corresponding interface version bump.
Backward incompatible changes are done by bumping the version number in
the protocol and interface names and resetting the interface version.
Once the protocol is to be declared stable, the 'z' prefix and the
version number in the protocol and interface names are removed and the
interface version number is reset.
Objects created through this interface, especially wl_buffers, will
remain valid.
This temporary object is used to collect multiple dmabuf handles into
a single batch to create a wl_buffer. It can only be used once and
should be destroyed after a 'created' or 'failed' event has been
received.
This event advertises one buffer format that the server supports.
All the supported formats are advertised once when the client
binds to this interface. A roundtrip after binding guarantees
that the client has received all supported formats.
For the definition of the format codes, see the
zwp_linux_buffer_params_v1::create request.
Warning: the 'format' event is likely to be deprecated and replaced
with the 'modifier' event introduced in zwp_linux_dmabuf_v1
version 3, described below. Please refrain from using the information
received from this event.
This event advertises the formats that the server supports, along with
the modifiers supported for each format. All the supported modifiers
for all the supported formats are advertised once when the client
binds to this interface. A roundtrip after binding guarantees that
the client has received all supported format-modifier pairs.
For the definition of the format and modifier codes, see the
zwp_linux_buffer_params_v1::create request.
This temporary object is a collection of dmabufs and other
parameters that together form a single logical buffer. The temporary
object may eventually create one wl_buffer unless cancelled by
destroying it before requesting 'create'.
Single-planar formats only require one dmabuf, however
multi-planar formats may require more than one dmabuf. For all
formats, an 'add' request must be called once per plane (even if the
underlying dmabuf fd is identical).
You must use consecutive plane indices ('plane_idx' argument for 'add')
from zero to the number of planes used by the drm_fourcc format code.
All planes required by the format must be given exactly once, but can
be given in any order. Each plane index can be set only once.
Cleans up the temporary data sent to the server for dmabuf-based
wl_buffer creation.
This request adds one dmabuf to the set in this
zwp_linux_buffer_params_v1.
The 64-bit unsigned value combined from modifier_hi and modifier_lo
is the dmabuf layout modifier. DRM AddFB2 ioctl calls this the
fb modifier, which is defined in drm_mode.h of Linux UAPI.
This is an opaque token. Drivers use this token to express tiling,
compression, etc. driver-specific modifications to the base format
defined by the DRM fourcc code.
This request raises the PLANE_IDX error if plane_idx is too large.
The error PLANE_SET is raised if attempting to set a plane that
was already set.
This asks for creation of a wl_buffer from the added dmabuf
buffers. The wl_buffer is not created immediately but returned via
the 'created' event if the dmabuf sharing succeeds. The sharing
may fail at runtime for reasons a client cannot predict, in
which case the 'failed' event is triggered.
The 'format' argument is a DRM_FORMAT code, as defined by the
libdrm's drm_fourcc.h. The Linux kernel's DRM sub-system is the
authoritative source on how the format codes should work.
The 'flags' is a bitfield of the flags defined in enum "flags".
'y_invert' means the that the image needs to be y-flipped.
Flag 'interlaced' means that the frame in the buffer is not
progressive as usual, but interlaced. An interlaced buffer as
supported here must always contain both top and bottom fields.
The top field always begins on the first pixel row. The temporal
ordering between the two fields is top field first, unless
'bottom_first' is specified. It is undefined whether 'bottom_first'
is ignored if 'interlaced' is not set.
This protocol does not convey any information about field rate,
duration, or timing, other than the relative ordering between the
two fields in one buffer. A compositor may have to estimate the
intended field rate from the incoming buffer rate. It is undefined
whether the time of receiving wl_surface.commit with a new buffer
attached, applying the wl_surface state, wl_surface.frame callback
trigger, presentation, or any other point in the compositor cycle
is used to measure the frame or field times. There is no support
for detecting missed or late frames/fields/buffers either, and
there is no support whatsoever for cooperating with interlaced
compositor output.
The composited image quality resulting from the use of interlaced
buffers is explicitly undefined. A compositor may use elaborate
hardware features or software to deinterlace and create progressive
output frames from a sequence of interlaced input buffers, or it
may produce substandard image quality. However, compositors that
cannot guarantee reasonable image quality in all cases are recommended
to just reject all interlaced buffers.
Any argument errors, including non-positive width or height,
mismatch between the number of planes and the format, bad
format, bad offset or stride, may be indicated by fatal protocol
errors: INCOMPLETE, INVALID_FORMAT, INVALID_DIMENSIONS,
OUT_OF_BOUNDS.
Dmabuf import errors in the server that are not obvious client
bugs are returned via the 'failed' event as non-fatal. This
allows attempting dmabuf sharing and falling back in the client
if it fails.
This request can be sent only once in the object's lifetime, after
which the only legal request is destroy. This object should be
destroyed after issuing a 'create' request. Attempting to use this
object after issuing 'create' raises ALREADY_USED protocol error.
It is not mandatory to issue 'create'. If a client wants to
cancel the buffer creation, it can just destroy this object.
This event indicates that the attempted buffer creation was
successful. It provides the new wl_buffer referencing the dmabuf(s).
Upon receiving this event, the client should destroy the
zlinux_dmabuf_params object.
This event indicates that the attempted buffer creation has
failed. It usually means that one of the dmabuf constraints
has not been fulfilled.
Upon receiving this event, the client should destroy the
zlinux_buffer_params object.
This asks for immediate creation of a wl_buffer by importing the
added dmabufs.
In case of import success, no event is sent from the server, and the
wl_buffer is ready to be used by the client.
Upon import failure, either of the following may happen, as seen fit
by the implementation:
- the client is terminated with one of the following fatal protocol
errors:
- INCOMPLETE, INVALID_FORMAT, INVALID_DIMENSIONS, OUT_OF_BOUNDS,
in case of argument errors such as mismatch between the number
of planes and the format, bad format, non-positive width or
height, or bad offset or stride.
- INVALID_WL_BUFFER, in case the cause for failure is unknown or
plaform specific.
- the server creates an invalid wl_buffer, marks it as failed and
sends a 'failed' event to the client. The result of using this
invalid wl_buffer as an argument in any request by the client is
defined by the compositor implementation.
This takes the same arguments as a 'create' request, and obeys the
same restrictions.