diff options
Diffstat (limited to 'sys/lib/python/random.py')
-rw-r--r-- | sys/lib/python/random.py | 862 |
1 files changed, 0 insertions, 862 deletions
diff --git a/sys/lib/python/random.py b/sys/lib/python/random.py deleted file mode 100644 index ed87ddd64..000000000 --- a/sys/lib/python/random.py +++ /dev/null @@ -1,862 +0,0 @@ -"""Random variable generators. - - integers - -------- - uniform within range - - sequences - --------- - pick random element - pick random sample - generate random permutation - - distributions on the real line: - ------------------------------ - uniform - normal (Gaussian) - lognormal - negative exponential - gamma - beta - pareto - Weibull - - distributions on the circle (angles 0 to 2pi) - --------------------------------------------- - circular uniform - von Mises - -General notes on the underlying Mersenne Twister core generator: - -* The period is 2**19937-1. -* It is one of the most extensively tested generators in existence. -* Without a direct way to compute N steps forward, the semantics of - jumpahead(n) are weakened to simply jump to another distant state and rely - on the large period to avoid overlapping sequences. -* The random() method is implemented in C, executes in a single Python step, - and is, therefore, threadsafe. - -""" - -from warnings import warn as _warn -from types import MethodType as _MethodType, BuiltinMethodType as _BuiltinMethodType -from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil -from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin -from os import urandom as _urandom -from binascii import hexlify as _hexlify - -__all__ = ["Random","seed","random","uniform","randint","choice","sample", - "randrange","shuffle","normalvariate","lognormvariate", - "expovariate","vonmisesvariate","gammavariate", - "gauss","betavariate","paretovariate","weibullvariate", - "getstate","setstate","jumpahead", "WichmannHill", "getrandbits", - "SystemRandom"] - -NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0) -TWOPI = 2.0*_pi -LOG4 = _log(4.0) -SG_MAGICCONST = 1.0 + _log(4.5) -BPF = 53 # Number of bits in a float -RECIP_BPF = 2**-BPF - - -# Translated by Guido van Rossum from C source provided by -# Adrian Baddeley. Adapted by Raymond Hettinger for use with -# the Mersenne Twister and os.urandom() core generators. - -import _random - -class Random(_random.Random): - """Random number generator base class used by bound module functions. - - Used to instantiate instances of Random to get generators that don't - share state. Especially useful for multi-threaded programs, creating - a different instance of Random for each thread, and using the jumpahead() - method to ensure that the generated sequences seen by each thread don't - overlap. - - Class Random can also be subclassed if you want to use a different basic - generator of your own devising: in that case, override the following - methods: random(), seed(), getstate(), setstate() and jumpahead(). - Optionally, implement a getrandombits() method so that randrange() - can cover arbitrarily large ranges. - - """ - - VERSION = 2 # used by getstate/setstate - - def __init__(self, x=None): - """Initialize an instance. - - Optional argument x controls seeding, as for Random.seed(). - """ - - self.seed(x) - self.gauss_next = None - - def seed(self, a=None): - """Initialize internal state from hashable object. - - None or no argument seeds from current time or from an operating - system specific randomness source if available. - - If a is not None or an int or long, hash(a) is used instead. - """ - - if a is None: - try: - a = long(_hexlify(_urandom(16)), 16) - except NotImplementedError: - import time - a = long(time.time() * 256) # use fractional seconds - - super(Random, self).seed(a) - self.gauss_next = None - - def getstate(self): - """Return internal state; can be passed to setstate() later.""" - return self.VERSION, super(Random, self).getstate(), self.gauss_next - - def setstate(self, state): - """Restore internal state from object returned by getstate().""" - version = state[0] - if version == 2: - version, internalstate, self.gauss_next = state - super(Random, self).setstate(internalstate) - else: - raise ValueError("state with version %s passed to " - "Random.setstate() of version %s" % - (version, self.VERSION)) - -## ---- Methods below this point do not need to be overridden when -## ---- subclassing for the purpose of using a different core generator. - -## -------------------- pickle support ------------------- - - def __getstate__(self): # for pickle - return self.getstate() - - def __setstate__(self, state): # for pickle - self.setstate(state) - - def __reduce__(self): - return self.__class__, (), self.getstate() - -## -------------------- integer methods ------------------- - - def randrange(self, start, stop=None, step=1, int=int, default=None, - maxwidth=1L<<BPF): - """Choose a random item from range(start, stop[, step]). - - This fixes the problem with randint() which includes the - endpoint; in Python this is usually not what you want. - Do not supply the 'int', 'default', and 'maxwidth' arguments. - """ - - # This code is a bit messy to make it fast for the - # common case while still doing adequate error checking. - istart = int(start) - if istart != start: - raise ValueError, "non-integer arg 1 for randrange()" - if stop is default: - if istart > 0: - if istart >= maxwidth: - return self._randbelow(istart) - return int(self.random() * istart) - raise ValueError, "empty range for randrange()" - - # stop argument supplied. - istop = int(stop) - if istop != stop: - raise ValueError, "non-integer stop for randrange()" - width = istop - istart - if step == 1 and width > 0: - # Note that - # int(istart + self.random()*width) - # instead would be incorrect. For example, consider istart - # = -2 and istop = 0. Then the guts would be in - # -2.0 to 0.0 exclusive on both ends (ignoring that random() - # might return 0.0), and because int() truncates toward 0, the - # final result would be -1 or 0 (instead of -2 or -1). - # istart + int(self.random()*width) - # would also be incorrect, for a subtler reason: the RHS - # can return a long, and then randrange() would also return - # a long, but we're supposed to return an int (for backward - # compatibility). - - if width >= maxwidth: - return int(istart + self._randbelow(width)) - return int(istart + int(self.random()*width)) - if step == 1: - raise ValueError, "empty range for randrange() (%d,%d, %d)" % (istart, istop, width) - - # Non-unit step argument supplied. - istep = int(step) - if istep != step: - raise ValueError, "non-integer step for randrange()" - if istep > 0: - n = (width + istep - 1) // istep - elif istep < 0: - n = (width + istep + 1) // istep - else: - raise ValueError, "zero step for randrange()" - - if n <= 0: - raise ValueError, "empty range for randrange()" - - if n >= maxwidth: - return istart + istep*self._randbelow(n) - return istart + istep*int(self.random() * n) - - def randint(self, a, b): - """Return random integer in range [a, b], including both end points. - """ - - return self.randrange(a, b+1) - - def _randbelow(self, n, _log=_log, int=int, _maxwidth=1L<<BPF, - _Method=_MethodType, _BuiltinMethod=_BuiltinMethodType): - """Return a random int in the range [0,n) - - Handles the case where n has more bits than returned - by a single call to the underlying generator. - """ - - try: - getrandbits = self.getrandbits - except AttributeError: - pass - else: - # Only call self.getrandbits if the original random() builtin method - # has not been overridden or if a new getrandbits() was supplied. - # This assures that the two methods correspond. - if type(self.random) is _BuiltinMethod or type(getrandbits) is _Method: - k = int(1.00001 + _log(n-1, 2.0)) # 2**k > n-1 > 2**(k-2) - r = getrandbits(k) - while r >= n: - r = getrandbits(k) - return r - if n >= _maxwidth: - _warn("Underlying random() generator does not supply \n" - "enough bits to choose from a population range this large") - return int(self.random() * n) - -## -------------------- sequence methods ------------------- - - def choice(self, seq): - """Choose a random element from a non-empty sequence.""" - return seq[int(self.random() * len(seq))] # raises IndexError if seq is empty - - def shuffle(self, x, random=None, int=int): - """x, random=random.random -> shuffle list x in place; return None. - - Optional arg random is a 0-argument function returning a random - float in [0.0, 1.0); by default, the standard random.random. - """ - - if random is None: - random = self.random - for i in reversed(xrange(1, len(x))): - # pick an element in x[:i+1] with which to exchange x[i] - j = int(random() * (i+1)) - x[i], x[j] = x[j], x[i] - - def sample(self, population, k): - """Chooses k unique random elements from a population sequence. - - Returns a new list containing elements from the population while - leaving the original population unchanged. The resulting list is - in selection order so that all sub-slices will also be valid random - samples. This allows raffle winners (the sample) to be partitioned - into grand prize and second place winners (the subslices). - - Members of the population need not be hashable or unique. If the - population contains repeats, then each occurrence is a possible - selection in the sample. - - To choose a sample in a range of integers, use xrange as an argument. - This is especially fast and space efficient for sampling from a - large population: sample(xrange(10000000), 60) - """ - - # XXX Although the documentation says `population` is "a sequence", - # XXX attempts are made to cater to any iterable with a __len__ - # XXX method. This has had mixed success. Examples from both - # XXX sides: sets work fine, and should become officially supported; - # XXX dicts are much harder, and have failed in various subtle - # XXX ways across attempts. Support for mapping types should probably - # XXX be dropped (and users should pass mapping.keys() or .values() - # XXX explicitly). - - # Sampling without replacement entails tracking either potential - # selections (the pool) in a list or previous selections in a set. - - # When the number of selections is small compared to the - # population, then tracking selections is efficient, requiring - # only a small set and an occasional reselection. For - # a larger number of selections, the pool tracking method is - # preferred since the list takes less space than the - # set and it doesn't suffer from frequent reselections. - - n = len(population) - if not 0 <= k <= n: - raise ValueError, "sample larger than population" - random = self.random - _int = int - result = [None] * k - setsize = 21 # size of a small set minus size of an empty list - if k > 5: - setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets - if n <= setsize or hasattr(population, "keys"): - # An n-length list is smaller than a k-length set, or this is a - # mapping type so the other algorithm wouldn't work. - pool = list(population) - for i in xrange(k): # invariant: non-selected at [0,n-i) - j = _int(random() * (n-i)) - result[i] = pool[j] - pool[j] = pool[n-i-1] # move non-selected item into vacancy - else: - try: - selected = set() - selected_add = selected.add - for i in xrange(k): - j = _int(random() * n) - while j in selected: - j = _int(random() * n) - selected_add(j) - result[i] = population[j] - except (TypeError, KeyError): # handle (at least) sets - if isinstance(population, list): - raise - return self.sample(tuple(population), k) - return result - -## -------------------- real-valued distributions ------------------- - -## -------------------- uniform distribution ------------------- - - def uniform(self, a, b): - """Get a random number in the range [a, b).""" - return a + (b-a) * self.random() - -## -------------------- normal distribution -------------------- - - def normalvariate(self, mu, sigma): - """Normal distribution. - - mu is the mean, and sigma is the standard deviation. - - """ - # mu = mean, sigma = standard deviation - - # Uses Kinderman and Monahan method. Reference: Kinderman, - # A.J. and Monahan, J.F., "Computer generation of random - # variables using the ratio of uniform deviates", ACM Trans - # Math Software, 3, (1977), pp257-260. - - random = self.random - while 1: - u1 = random() - u2 = 1.0 - random() - z = NV_MAGICCONST*(u1-0.5)/u2 - zz = z*z/4.0 - if zz <= -_log(u2): - break - return mu + z*sigma - -## -------------------- lognormal distribution -------------------- - - def lognormvariate(self, mu, sigma): - """Log normal distribution. - - If you take the natural logarithm of this distribution, you'll get a - normal distribution with mean mu and standard deviation sigma. - mu can have any value, and sigma must be greater than zero. - - """ - return _exp(self.normalvariate(mu, sigma)) - -## -------------------- exponential distribution -------------------- - - def expovariate(self, lambd): - """Exponential distribution. - - lambd is 1.0 divided by the desired mean. (The parameter would be - called "lambda", but that is a reserved word in Python.) Returned - values range from 0 to positive infinity. - - """ - # lambd: rate lambd = 1/mean - # ('lambda' is a Python reserved word) - - random = self.random - u = random() - while u <= 1e-7: - u = random() - return -_log(u)/lambd - -## -------------------- von Mises distribution -------------------- - - def vonmisesvariate(self, mu, kappa): - """Circular data distribution. - - mu is the mean angle, expressed in radians between 0 and 2*pi, and - kappa is the concentration parameter, which must be greater than or - equal to zero. If kappa is equal to zero, this distribution reduces - to a uniform random angle over the range 0 to 2*pi. - - """ - # mu: mean angle (in radians between 0 and 2*pi) - # kappa: concentration parameter kappa (>= 0) - # if kappa = 0 generate uniform random angle - - # Based upon an algorithm published in: Fisher, N.I., - # "Statistical Analysis of Circular Data", Cambridge - # University Press, 1993. - - # Thanks to Magnus Kessler for a correction to the - # implementation of step 4. - - random = self.random - if kappa <= 1e-6: - return TWOPI * random() - - a = 1.0 + _sqrt(1.0 + 4.0 * kappa * kappa) - b = (a - _sqrt(2.0 * a))/(2.0 * kappa) - r = (1.0 + b * b)/(2.0 * b) - - while 1: - u1 = random() - - z = _cos(_pi * u1) - f = (1.0 + r * z)/(r + z) - c = kappa * (r - f) - - u2 = random() - - if u2 < c * (2.0 - c) or u2 <= c * _exp(1.0 - c): - break - - u3 = random() - if u3 > 0.5: - theta = (mu % TWOPI) + _acos(f) - else: - theta = (mu % TWOPI) - _acos(f) - - return theta - -## -------------------- gamma distribution -------------------- - - def gammavariate(self, alpha, beta): - """Gamma distribution. Not the gamma function! - - Conditions on the parameters are alpha > 0 and beta > 0. - - """ - - # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2 - - # Warning: a few older sources define the gamma distribution in terms - # of alpha > -1.0 - if alpha <= 0.0 or beta <= 0.0: - raise ValueError, 'gammavariate: alpha and beta must be > 0.0' - - random = self.random - if alpha > 1.0: - - # Uses R.C.H. Cheng, "The generation of Gamma - # variables with non-integral shape parameters", - # Applied Statistics, (1977), 26, No. 1, p71-74 - - ainv = _sqrt(2.0 * alpha - 1.0) - bbb = alpha - LOG4 - ccc = alpha + ainv - - while 1: - u1 = random() - if not 1e-7 < u1 < .9999999: - continue - u2 = 1.0 - random() - v = _log(u1/(1.0-u1))/ainv - x = alpha*_exp(v) - z = u1*u1*u2 - r = bbb+ccc*v-x - if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z): - return x * beta - - elif alpha == 1.0: - # expovariate(1) - u = random() - while u <= 1e-7: - u = random() - return -_log(u) * beta - - else: # alpha is between 0 and 1 (exclusive) - - # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle - - while 1: - u = random() - b = (_e + alpha)/_e - p = b*u - if p <= 1.0: - x = p ** (1.0/alpha) - else: - x = -_log((b-p)/alpha) - u1 = random() - if p > 1.0: - if u1 <= x ** (alpha - 1.0): - break - elif u1 <= _exp(-x): - break - return x * beta - -## -------------------- Gauss (faster alternative) -------------------- - - def gauss(self, mu, sigma): - """Gaussian distribution. - - mu is the mean, and sigma is the standard deviation. This is - slightly faster than the normalvariate() function. - - Not thread-safe without a lock around calls. - - """ - - # When x and y are two variables from [0, 1), uniformly - # distributed, then - # - # cos(2*pi*x)*sqrt(-2*log(1-y)) - # sin(2*pi*x)*sqrt(-2*log(1-y)) - # - # are two *independent* variables with normal distribution - # (mu = 0, sigma = 1). - # (Lambert Meertens) - # (corrected version; bug discovered by Mike Miller, fixed by LM) - - # Multithreading note: When two threads call this function - # simultaneously, it is possible that they will receive the - # same return value. The window is very small though. To - # avoid this, you have to use a lock around all calls. (I - # didn't want to slow this down in the serial case by using a - # lock here.) - - random = self.random - z = self.gauss_next - self.gauss_next = None - if z is None: - x2pi = random() * TWOPI - g2rad = _sqrt(-2.0 * _log(1.0 - random())) - z = _cos(x2pi) * g2rad - self.gauss_next = _sin(x2pi) * g2rad - - return mu + z*sigma - -## -------------------- beta -------------------- -## See -## http://sourceforge.net/bugs/?func=detailbug&bug_id=130030&group_id=5470 -## for Ivan Frohne's insightful analysis of why the original implementation: -## -## def betavariate(self, alpha, beta): -## # Discrete Event Simulation in C, pp 87-88. -## -## y = self.expovariate(alpha) -## z = self.expovariate(1.0/beta) -## return z/(y+z) -## -## was dead wrong, and how it probably got that way. - - def betavariate(self, alpha, beta): - """Beta distribution. - - Conditions on the parameters are alpha > 0 and beta > 0. - Returned values range between 0 and 1. - - """ - - # This version due to Janne Sinkkonen, and matches all the std - # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution"). - y = self.gammavariate(alpha, 1.) - if y == 0: - return 0.0 - else: - return y / (y + self.gammavariate(beta, 1.)) - -## -------------------- Pareto -------------------- - - def paretovariate(self, alpha): - """Pareto distribution. alpha is the shape parameter.""" - # Jain, pg. 495 - - u = 1.0 - self.random() - return 1.0 / pow(u, 1.0/alpha) - -## -------------------- Weibull -------------------- - - def weibullvariate(self, alpha, beta): - """Weibull distribution. - - alpha is the scale parameter and beta is the shape parameter. - - """ - # Jain, pg. 499; bug fix courtesy Bill Arms - - u = 1.0 - self.random() - return alpha * pow(-_log(u), 1.0/beta) - -## -------------------- Wichmann-Hill ------------------- - -class WichmannHill(Random): - - VERSION = 1 # used by getstate/setstate - - def seed(self, a=None): - """Initialize internal state from hashable object. - - None or no argument seeds from current time or from an operating - system specific randomness source if available. - - If a is not None or an int or long, hash(a) is used instead. - - If a is an int or long, a is used directly. Distinct values between - 0 and 27814431486575L inclusive are guaranteed to yield distinct - internal states (this guarantee is specific to the default - Wichmann-Hill generator). - """ - - if a is None: - try: - a = long(_hexlify(_urandom(16)), 16) - except NotImplementedError: - import time - a = long(time.time() * 256) # use fractional seconds - - if not isinstance(a, (int, long)): - a = hash(a) - - a, x = divmod(a, 30268) - a, y = divmod(a, 30306) - a, z = divmod(a, 30322) - self._seed = int(x)+1, int(y)+1, int(z)+1 - - self.gauss_next = None - - def random(self): - """Get the next random number in the range [0.0, 1.0).""" - - # Wichman-Hill random number generator. - # - # Wichmann, B. A. & Hill, I. D. (1982) - # Algorithm AS 183: - # An efficient and portable pseudo-random number generator - # Applied Statistics 31 (1982) 188-190 - # - # see also: - # Correction to Algorithm AS 183 - # Applied Statistics 33 (1984) 123 - # - # McLeod, A. I. (1985) - # A remark on Algorithm AS 183 - # Applied Statistics 34 (1985),198-200 - - # This part is thread-unsafe: - # BEGIN CRITICAL SECTION - x, y, z = self._seed - x = (171 * x) % 30269 - y = (172 * y) % 30307 - z = (170 * z) % 30323 - self._seed = x, y, z - # END CRITICAL SECTION - - # Note: on a platform using IEEE-754 double arithmetic, this can - # never return 0.0 (asserted by Tim; proof too long for a comment). - return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0 - - def getstate(self): - """Return internal state; can be passed to setstate() later.""" - return self.VERSION, self._seed, self.gauss_next - - def setstate(self, state): - """Restore internal state from object returned by getstate().""" - version = state[0] - if version == 1: - version, self._seed, self.gauss_next = state - else: - raise ValueError("state with version %s passed to " - "Random.setstate() of version %s" % - (version, self.VERSION)) - - def jumpahead(self, n): - """Act as if n calls to random() were made, but quickly. - - n is an int, greater than or equal to 0. - - Example use: If you have 2 threads and know that each will - consume no more than a million random numbers, create two Random - objects r1 and r2, then do - r2.setstate(r1.getstate()) - r2.jumpahead(1000000) - Then r1 and r2 will use guaranteed-disjoint segments of the full - period. - """ - - if not n >= 0: - raise ValueError("n must be >= 0") - x, y, z = self._seed - x = int(x * pow(171, n, 30269)) % 30269 - y = int(y * pow(172, n, 30307)) % 30307 - z = int(z * pow(170, n, 30323)) % 30323 - self._seed = x, y, z - - def __whseed(self, x=0, y=0, z=0): - """Set the Wichmann-Hill seed from (x, y, z). - - These must be integers in the range [0, 256). - """ - - if not type(x) == type(y) == type(z) == int: - raise TypeError('seeds must be integers') - if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256): - raise ValueError('seeds must be in range(0, 256)') - if 0 == x == y == z: - # Initialize from current time - import time - t = long(time.time() * 256) - t = int((t&0xffffff) ^ (t>>24)) - t, x = divmod(t, 256) - t, y = divmod(t, 256) - t, z = divmod(t, 256) - # Zero is a poor seed, so substitute 1 - self._seed = (x or 1, y or 1, z or 1) - - self.gauss_next = None - - def whseed(self, a=None): - """Seed from hashable object's hash code. - - None or no argument seeds from current time. It is not guaranteed - that objects with distinct hash codes lead to distinct internal - states. - - This is obsolete, provided for compatibility with the seed routine - used prior to Python 2.1. Use the .seed() method instead. - """ - - if a is None: - self.__whseed() - return - a = hash(a) - a, x = divmod(a, 256) - a, y = divmod(a, 256) - a, z = divmod(a, 256) - x = (x + a) % 256 or 1 - y = (y + a) % 256 or 1 - z = (z + a) % 256 or 1 - self.__whseed(x, y, z) - -## --------------- Operating System Random Source ------------------ - -class SystemRandom(Random): - """Alternate random number generator using sources provided - by the operating system (such as /dev/urandom on Unix or - CryptGenRandom on Windows). - - Not available on all systems (see os.urandom() for details). - """ - - def random(self): - """Get the next random number in the range [0.0, 1.0).""" - return (long(_hexlify(_urandom(7)), 16) >> 3) * RECIP_BPF - - def getrandbits(self, k): - """getrandbits(k) -> x. Generates a long int with k random bits.""" - if k <= 0: - raise ValueError('number of bits must be greater than zero') - if k != int(k): - raise TypeError('number of bits should be an integer') - bytes = (k + 7) // 8 # bits / 8 and rounded up - x = long(_hexlify(_urandom(bytes)), 16) - return x >> (bytes * 8 - k) # trim excess bits - - def _stub(self, *args, **kwds): - "Stub method. Not used for a system random number generator." - return None - seed = jumpahead = _stub - - def _notimplemented(self, *args, **kwds): - "Method should not be called for a system random number generator." - raise NotImplementedError('System entropy source does not have state.') - getstate = setstate = _notimplemented - -## -------------------- test program -------------------- - -def _test_generator(n, func, args): - import time - print n, 'times', func.__name__ - total = 0.0 - sqsum = 0.0 - smallest = 1e10 - largest = -1e10 - t0 = time.time() - for i in range(n): - x = func(*args) - total += x - sqsum = sqsum + x*x - smallest = min(x, smallest) - largest = max(x, largest) - t1 = time.time() - print round(t1-t0, 3), 'sec,', - avg = total/n - stddev = _sqrt(sqsum/n - avg*avg) - print 'avg %g, stddev %g, min %g, max %g' % \ - (avg, stddev, smallest, largest) - - -def _test(N=2000): - _test_generator(N, random, ()) - _test_generator(N, normalvariate, (0.0, 1.0)) - _test_generator(N, lognormvariate, (0.0, 1.0)) - _test_generator(N, vonmisesvariate, (0.0, 1.0)) - _test_generator(N, gammavariate, (0.01, 1.0)) - _test_generator(N, gammavariate, (0.1, 1.0)) - _test_generator(N, gammavariate, (0.1, 2.0)) - _test_generator(N, gammavariate, (0.5, 1.0)) - _test_generator(N, gammavariate, (0.9, 1.0)) - _test_generator(N, gammavariate, (1.0, 1.0)) - _test_generator(N, gammavariate, (2.0, 1.0)) - _test_generator(N, gammavariate, (20.0, 1.0)) - _test_generator(N, gammavariate, (200.0, 1.0)) - _test_generator(N, gauss, (0.0, 1.0)) - _test_generator(N, betavariate, (3.0, 3.0)) - -# Create one instance, seeded from current time, and export its methods -# as module-level functions. The functions share state across all uses -#(both in the user's code and in the Python libraries), but that's fine -# for most programs and is easier for the casual user than making them -# instantiate their own Random() instance. - -_inst = Random() -seed = _inst.seed -random = _inst.random -uniform = _inst.uniform -randint = _inst.randint -choice = _inst.choice -randrange = _inst.randrange -sample = _inst.sample -shuffle = _inst.shuffle -normalvariate = _inst.normalvariate -lognormvariate = _inst.lognormvariate -expovariate = _inst.expovariate -vonmisesvariate = _inst.vonmisesvariate -gammavariate = _inst.gammavariate -gauss = _inst.gauss -betavariate = _inst.betavariate -paretovariate = _inst.paretovariate -weibullvariate = _inst.weibullvariate -getstate = _inst.getstate -setstate = _inst.setstate -jumpahead = _inst.jumpahead -getrandbits = _inst.getrandbits - -if __name__ == '__main__': - _test() |