aboutsummaryrefslogtreecommitdiff
path: root/srp/src/client.rs
blob: 263e5f34b70cb34d1f883d320c1ddd1db1aaa254 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
//! SRP client implementation.
//!
//! # Usage
//! First create SRP client struct by passing to it SRP parameters (shared
//! between client and server).
//!
//! You can use SHA1 from SRP-6a, but it's highly recommended to use specialized
//! password hashing algorithm instead (e.g. PBKDF2, argon2 or scrypt).
//!
//! ```rust
//! use crate::srp::groups::G_2048;
//! use sha2::Sha256; // Note: You should probably use a proper password KDF
//! # use crate::srp::client::SrpClient;
//!
//! let client = SrpClient::<Sha256>::new(&G_2048);
//! ```
//!
//! Next send handshake data (username and `a_pub`) to the server and receive
//! `salt` and `b_pub`:
//!
//! ```rust
//! # let client = crate::srp::client::SrpClient::<sha2::Sha256>::new(&crate::srp::groups::G_2048);
//! # fn server_response()-> (Vec<u8>, Vec<u8>) { (vec![], vec![]) }
//!
//! let mut a = [0u8; 64];
//! // rng.fill_bytes(&mut a);
//! let a_pub = client.compute_public_ephemeral(&a);
//! let (salt, b_pub) = server_response();
//! ```
//!
//! Process the server response and create verifier instance.
//! process_reply can return error in case of malicious `b_pub`.
//!
//! ```rust
//! # let client = crate::srp::client::SrpClient::<sha2::Sha256>::new(&crate::srp::groups::G_2048);
//! # let a = [0u8; 64];
//! # let username = b"username";
//! # let password = b"password";
//! # let salt = b"salt";
//! # let b_pub = b"b_pub";
//!
//! let private_key = (username, password, salt);
//! let verifier = client.process_reply(&a, username, password, salt, b_pub);
//! ```
//!
//! Finally verify the server: first generate user proof,
//! send it to the server and verify server proof in the reply. Note that
//! `verify_server` method will return error in case of incorrect server reply.
//!
//! ```rust
//! # let client = crate::srp::client::SrpClient::<sha2::Sha256>::new(&crate::srp::groups::G_2048);
//! # let verifier = client.process_reply(b"", b"", b"", b"", b"1").unwrap();
//! # fn send_proof(_: &[u8]) -> Vec<u8> { vec![173, 202, 13, 26, 207, 73, 0, 46, 121, 238, 48, 170, 96, 146, 60, 49, 88, 76, 12, 184, 152, 76, 207, 220, 140, 205, 190, 189, 117, 6, 131, 63]   }
//!
//! let client_proof = verifier.proof();
//! let server_proof = send_proof(client_proof);
//! verifier.verify_server(&server_proof).unwrap();
//! ```
//!
//! `key` contains shared secret key between user and the server. You can extract shared secret
//! key using `key()` method.
//! ```rust
//! # let client = crate::srp::client::SrpClient::<sha2::Sha256>::new(&crate::srp::groups::G_2048);
//! # let verifier = client.process_reply(b"", b"", b"", b"", b"1").unwrap();
//!
//! verifier.key();
//!```
//!
//!
//! For user registration on the server first generate salt (e.g. 32 bytes long)
//! and get password verifier which depends on private key. Send username, salt
//! and password verifier over protected channel to protect against
//! Man-in-the-middle (MITM) attack for registration.
//!
//! ```rust
//! # let client = crate::srp::client::SrpClient::<sha2::Sha256>::new(&crate::srp::groups::G_2048);
//! # let username = b"username";
//! # let password = b"password";
//! # let salt = b"salt";
//! # fn send_registration_data(_: &[u8], _: &[u8], _: &[u8]) {}
//!
//! let pwd_verifier = client.compute_verifier(username, password, salt);
//! send_registration_data(username, salt, &pwd_verifier);
//! ```

use std::marker::PhantomData;

use digest::{Digest, Output};
use num_bigint::BigUint;
use subtle::ConstantTimeEq;

use crate::types::{SrpAuthError, SrpGroup};
use crate::utils::{compute_k, compute_m1, compute_m2, compute_u};

/// SRP client state before handshake with the server.
pub struct SrpClient<'a, D: Digest> {
    params: &'a SrpGroup,
    d: PhantomData<D>,
}

/// SRP client state after handshake with the server.
pub struct SrpClientVerifier<D: Digest> {
    m1: Output<D>,
    m2: Output<D>,
    key: Vec<u8>,
}

impl<'a, D: Digest> SrpClient<'a, D> {
    /// Create new SRP client instance.
    pub fn new(params: &'a SrpGroup) -> Self {
        Self {
            params,
            d: Default::default(),
        }
    }

    pub fn compute_a_pub(&self, a: &BigUint) -> BigUint {
        self.params.g.modpow(a, &self.params.n)
    }

    //  H(<username> | ":" | <raw password>)
    pub fn compute_identity_hash(username: &[u8], password: &[u8]) -> Output<D> {
        let mut d = D::new();
        d.update(username);
        d.update(b":");
        d.update(password);
        d.finalize()
    }

    // x = H(<salt> | H(<username> | ":" | <raw password>))
    pub fn compute_x(identity_hash: &[u8], salt: &[u8]) -> BigUint {
        let mut x = D::new();
        x.update(salt);
        x.update(identity_hash);
        BigUint::from_bytes_be(&x.finalize())
    }

    // (B - (k * g^x)) ^ (a + (u * x)) % N
    pub fn compute_premaster_secret(
        &self,
        b_pub: &BigUint,
        k: &BigUint,
        x: &BigUint,
        a: &BigUint,
        u: &BigUint,
    ) -> BigUint {
        // (k * g^x)
        let base = (k * (self.params.g.modpow(x, &self.params.n))) % &self.params.n;
        // Because we do operation in modulo N we can get: b_pub > base. That's not good. So we add N to b_pub to make sure.
        // B - kg^x
        let base = ((&self.params.n + b_pub) - &base) % &self.params.n;
        let exp = (u * x) + a;
        // S = (B - kg^x) ^ (a + ux)
        // or
        // S = base ^ exp
        base.modpow(&exp, &self.params.n)
    }

    // v = g^x % N
    pub fn compute_v(&self, x: &BigUint) -> BigUint {
        self.params.g.modpow(x, &self.params.n)
    }

    /// Get password verifier (v in RFC5054) for user registration on the server.
    pub fn compute_verifier(&self, username: &[u8], password: &[u8], salt: &[u8]) -> Vec<u8> {
        let identity_hash = Self::compute_identity_hash(username, password);
        let x = Self::compute_x(identity_hash.as_slice(), salt);
        self.compute_v(&x).to_bytes_be()
    }

    /// Get public ephemeral value for handshaking with the server.
    /// g^a % N
    pub fn compute_public_ephemeral(&self, a: &[u8]) -> Vec<u8> {
        self.compute_a_pub(&BigUint::from_bytes_be(a)).to_bytes_be()
    }

    /// Process server reply to the handshake.
    /// a is a random value,
    /// username, password is supplied by the user
    /// salt and b_pub come from the server
    pub fn process_reply(
        &self,
        a: &[u8],
        username: &[u8],
        password: &[u8],
        salt: &[u8],
        b_pub: &[u8],
    ) -> Result<SrpClientVerifier<D>, SrpAuthError> {
        let a = BigUint::from_bytes_be(a);
        let a_pub = self.compute_a_pub(&a);
        let b_pub = BigUint::from_bytes_be(b_pub);

        // Safeguard against malicious B
        if &b_pub % &self.params.n == BigUint::default() {
            return Err(SrpAuthError::IllegalParameter("b_pub".to_owned()));
        }

        let u = compute_u::<D>(&a_pub.to_bytes_be(), &b_pub.to_bytes_be());
        let k = compute_k::<D>(self.params);
        let identity_hash = Self::compute_identity_hash(username, password);
        let x = Self::compute_x(identity_hash.as_slice(), salt);

        let key = self.compute_premaster_secret(&b_pub, &k, &x, &a, &u);

        let m1 = compute_m1::<D>(
            self.params,
            &a_pub.to_bytes_be(),
            &b_pub.to_bytes_be(),
            &key.to_bytes_be(),
        );

        let m2 = compute_m2::<D>(&a_pub.to_bytes_be(), &m1, &key.to_bytes_be());

        Ok(SrpClientVerifier {
            m1,
            m2,
            key: key.to_bytes_be(),
        })
    }
}

impl<D: Digest> SrpClientVerifier<D> {
    /// Get shared secret key without authenticating server, e.g. for using with
    /// authenticated encryption modes. DO NOT USE this method without
    /// some kind of secure authentication
    pub fn key(&self) -> &[u8] {
        &self.key
    }

    /// Verification data for sending to the server.
    pub fn proof(&self) -> &[u8] {
        self.m1.as_slice()
    }

    /// Verify server reply to verification data.
    pub fn verify_server(&self, reply: &[u8]) -> Result<(), SrpAuthError> {
        if self.m2.ct_eq(reply).unwrap_u8() != 1 {
            // aka == 0
            Err(SrpAuthError::BadRecordMac("server".to_owned()))
        } else {
            Ok(())
        }
    }
}