#![doc(html_logo_url = "https://raw.githubusercontent.com/RustCrypto/meta/master/logo_small.png")] #![deny(warnings)] #![forbid(unsafe_code)] extern crate curve25519_dalek; extern crate hex; extern crate hkdf; extern crate num_bigint; extern crate rand; extern crate sha2; use curve25519_dalek::constants::ED25519_BASEPOINT_POINT; use curve25519_dalek::edwards::CompressedEdwardsY; use curve25519_dalek::edwards::EdwardsPoint as c2_Element; use curve25519_dalek::scalar::Scalar as c2_Scalar; use hkdf::Hkdf; use rand::{CryptoRng, OsRng, Rng}; use sha2::{Digest, Sha256}; use std::fmt; use std::ops::Deref; /* "newtype pattern": it's a Vec, but only used for a specific argument * type, to distinguish between ones that are meant as passwords, and ones * that are meant as identity strings */ #[derive(PartialEq, Eq, Clone)] pub struct Password(Vec); impl Password { pub fn new(p: &[u8]) -> Password { Password(p.to_vec()) } } impl Deref for Password { type Target = Vec; fn deref(&self) -> &Vec { &self.0 } } #[derive(PartialEq, Eq, Clone)] pub struct Identity(Vec); impl Deref for Identity { type Target = Vec; fn deref(&self) -> &Vec { &self.0 } } impl Identity { pub fn new(p: &[u8]) -> Identity { Identity(p.to_vec()) } } #[derive(Debug, PartialEq, Eq)] pub enum ErrorType { BadSide, WrongLength, CorruptMessage, } #[derive(Debug, PartialEq, Eq)] pub struct SPAKEErr { pub kind: ErrorType, } pub trait Group { type Scalar; type Element; //type Element: Add // + Mul; // const element_length: usize; // in unstable, or u8 //type ElementBytes : Index+IndexMut; // later type TranscriptHash; fn const_m() -> Self::Element; fn const_n() -> Self::Element; fn const_s() -> Self::Element; fn hash_to_scalar(s: &[u8]) -> Self::Scalar; fn random_scalar(cspring: &mut T) -> Self::Scalar where T: Rng + CryptoRng; fn scalar_neg(s: &Self::Scalar) -> Self::Scalar; fn element_to_bytes(e: &Self::Element) -> Vec; fn bytes_to_element(b: &[u8]) -> Option; fn element_length() -> usize; fn basepoint_mult(s: &Self::Scalar) -> Self::Element; fn scalarmult(e: &Self::Element, s: &Self::Scalar) -> Self::Element; fn add(a: &Self::Element, b: &Self::Element) -> Self::Element; } #[derive(Debug, PartialEq, Eq)] pub struct Ed25519Group; impl Group for Ed25519Group { type Scalar = c2_Scalar; type Element = c2_Element; //type ElementBytes = Vec; //type ElementBytes = [u8; 32]; //type ScalarBytes type TranscriptHash = Sha256; fn const_m() -> c2_Element { // python -c "import binascii, spake2; b=binascii.hexlify(spake2.ParamsEd25519.M.to_bytes()); print(', '.join(['0x'+b[i:i+2] for i in range(0,len(b),2)]))" // 15cfd18e385952982b6a8f8c7854963b58e34388c8e6dae891db756481a02312 CompressedEdwardsY([ 0x15, 0xcf, 0xd1, 0x8e, 0x38, 0x59, 0x52, 0x98, 0x2b, 0x6a, 0x8f, 0x8c, 0x78, 0x54, 0x96, 0x3b, 0x58, 0xe3, 0x43, 0x88, 0xc8, 0xe6, 0xda, 0xe8, 0x91, 0xdb, 0x75, 0x64, 0x81, 0xa0, 0x23, 0x12, ]).decompress() .unwrap() } fn const_n() -> c2_Element { // python -c "import binascii, spake2; b=binascii.hexlify(spake2.ParamsEd25519.N.to_bytes()); print(', '.join(['0x'+b[i:i+2] for i in range(0,len(b),2)]))" // f04f2e7eb734b2a8f8b472eaf9c3c632576ac64aea650b496a8a20ff00e583c3 CompressedEdwardsY([ 0xf0, 0x4f, 0x2e, 0x7e, 0xb7, 0x34, 0xb2, 0xa8, 0xf8, 0xb4, 0x72, 0xea, 0xf9, 0xc3, 0xc6, 0x32, 0x57, 0x6a, 0xc6, 0x4a, 0xea, 0x65, 0x0b, 0x49, 0x6a, 0x8a, 0x20, 0xff, 0x00, 0xe5, 0x83, 0xc3, ]).decompress() .unwrap() } fn const_s() -> c2_Element { // python -c "import binascii, spake2; b=binascii.hexlify(spake2.ParamsEd25519.S.to_bytes()); print(', '.join(['0x'+b[i:i+2] for i in range(0,len(b),2)]))" // 6f00dae87c1be1a73b5922ef431cd8f57879569c222d22b1cd71e8546ab8e6f1 CompressedEdwardsY([ 0x6f, 0x00, 0xda, 0xe8, 0x7c, 0x1b, 0xe1, 0xa7, 0x3b, 0x59, 0x22, 0xef, 0x43, 0x1c, 0xd8, 0xf5, 0x78, 0x79, 0x56, 0x9c, 0x22, 0x2d, 0x22, 0xb1, 0xcd, 0x71, 0xe8, 0x54, 0x6a, 0xb8, 0xe6, 0xf1, ]).decompress() .unwrap() } fn hash_to_scalar(s: &[u8]) -> c2_Scalar { ed25519_hash_to_scalar(s) } fn random_scalar(cspring: &mut T) -> c2_Scalar where T: Rng + CryptoRng, { c2_Scalar::random(cspring) } fn scalar_neg(s: &c2_Scalar) -> c2_Scalar { -s } fn element_to_bytes(s: &c2_Element) -> Vec { s.compress().as_bytes().to_vec() } fn element_length() -> usize { 32 } fn bytes_to_element(b: &[u8]) -> Option { if b.len() != 32 { return None; } //let mut bytes: [u8; 32] = let mut bytes = [0u8; 32]; bytes.copy_from_slice(b); let cey = CompressedEdwardsY(bytes); // CompressedEdwardsY::new(b) cey.decompress() } fn basepoint_mult(s: &c2_Scalar) -> c2_Element { //c2_Element::basepoint_mult(s) ED25519_BASEPOINT_POINT * s } fn scalarmult(e: &c2_Element, s: &c2_Scalar) -> c2_Element { e * s //e.scalar_mult(s) } fn add(a: &c2_Element, b: &c2_Element) -> c2_Element { a + b //a.add(b) } } fn ed25519_hash_to_scalar(s: &[u8]) -> c2_Scalar { //c2_Scalar::hash_from_bytes::(&s) // spake2.py does: // h = HKDF(salt=b"", ikm=s, hash=SHA256, info=b"SPAKE2 pw", len=32+16) // i = int(h, 16) // i % q let mut okm = [0u8; 32 + 16]; Hkdf::::extract(Some(b""), s) .expand(b"SPAKE2 pw", &mut okm) .unwrap(); //println!("expanded: {}{}", "................................", okm.iter().to_hex()); // ok let mut reducible = [0u8; 64]; // little-endian for (i, x) in okm.iter().enumerate().take(32 + 16) { reducible[32 + 16 - 1 - i] = *x; } //println!("reducible: {}", reducible.iter().to_hex()); c2_Scalar::from_bytes_mod_order_wide(&reducible) //let reduced = c2_Scalar::reduce(&reducible); //println!("reduced: {}", reduced.as_bytes().to_hex()); //println!("done"); //reduced } fn ed25519_hash_ab( password_vec: &[u8], id_a: &[u8], id_b: &[u8], first_msg: &[u8], second_msg: &[u8], key_bytes: &[u8], ) -> Vec { assert_eq!(first_msg.len(), 32); assert_eq!(second_msg.len(), 32); // the transcript is fixed-length, made up of 6 32-byte values: // byte 0-31 : sha256(pw) // byte 32-63 : sha256(idA) // byte 64-95 : sha256(idB) // byte 96-127 : X_msg // byte 128-159: Y_msg // byte 160-191: K_bytes let mut transcript = [0u8; 6 * 32]; let mut pw_hash = Sha256::new(); pw_hash.input(password_vec); transcript[0..32].copy_from_slice(&pw_hash.result()); let mut ida_hash = Sha256::new(); ida_hash.input(id_a); transcript[32..64].copy_from_slice(&ida_hash.result()); let mut idb_hash = Sha256::new(); idb_hash.input(id_b); transcript[64..96].copy_from_slice(&idb_hash.result()); transcript[96..128].copy_from_slice(first_msg); transcript[128..160].copy_from_slice(second_msg); transcript[160..192].copy_from_slice(key_bytes); //println!("transcript: {:?}", transcript.iter().to_hex()); //let mut hash = G::TranscriptHash::default(); let mut hash = Sha256::new(); hash.input(&transcript); hash.result().to_vec() } fn ed25519_hash_symmetric( password_vec: &[u8], id_s: &[u8], msg_u: &[u8], msg_v: &[u8], key_bytes: &[u8], ) -> Vec { assert_eq!(msg_u.len(), 32); assert_eq!(msg_v.len(), 32); // # since we don't know which side is which, we must sort the messages // first_msg, second_msg = sorted([msg1, msg2]) // transcript = b"".join([sha256(pw).digest(), // sha256(idSymmetric).digest(), // first_msg, second_msg, K_bytes]) // the transcript is fixed-length, made up of 5 32-byte values: // byte 0-31 : sha256(pw) // byte 32-63 : sha256(idSymmetric) // byte 64-95 : X_msg // byte 96-127 : Y_msg // byte 128-159: K_bytes let mut transcript = [0u8; 5 * 32]; let mut pw_hash = Sha256::new(); pw_hash.input(password_vec); transcript[0..32].copy_from_slice(&pw_hash.result()); let mut ids_hash = Sha256::new(); ids_hash.input(id_s); transcript[32..64].copy_from_slice(&ids_hash.result()); if msg_u < msg_v { transcript[64..96].copy_from_slice(msg_u); transcript[96..128].copy_from_slice(msg_v); } else { transcript[64..96].copy_from_slice(msg_v); transcript[96..128].copy_from_slice(msg_u); } transcript[128..160].copy_from_slice(key_bytes); let mut hash = Sha256::new(); hash.input(&transcript); hash.result().to_vec() } /* "session type pattern" */ #[derive(Debug, PartialEq, Eq)] enum Side { A, B, Symmetric, } // we implement a custom Debug below, to avoid revealing secrets in a dump #[derive(PartialEq, Eq)] pub struct SPAKE2 { //where &G::Scalar: Neg { side: Side, xy_scalar: G::Scalar, password_vec: Vec, id_a: Vec, id_b: Vec, id_s: Vec, msg1: Vec, password_scalar: G::Scalar, } impl SPAKE2 { fn start_internal( side: Side, password: &Password, id_a: &Identity, id_b: &Identity, id_s: &Identity, xy_scalar: G::Scalar, ) -> (SPAKE2, Vec) { //let password_scalar: G::Scalar = hash_to_scalar::(password); let password_scalar: G::Scalar = G::hash_to_scalar(&password); // a: X = B*x + M*pw // b: Y = B*y + N*pw // sym: X = B*x * S*pw let blinding = match side { Side::A => G::const_m(), Side::B => G::const_n(), Side::Symmetric => G::const_s(), }; let m1: G::Element = G::add( &G::basepoint_mult(&xy_scalar), &G::scalarmult(&blinding, &password_scalar), ); //let m1: G::Element = &G::basepoint_mult(&x) + &(blinding * &password_scalar); let msg1: Vec = G::element_to_bytes(&m1); let mut password_vec = Vec::new(); password_vec.extend_from_slice(&password); let mut id_a_copy = Vec::new(); id_a_copy.extend_from_slice(&id_a); let mut id_b_copy = Vec::new(); id_b_copy.extend_from_slice(&id_b); let mut id_s_copy = Vec::new(); id_s_copy.extend_from_slice(&id_s); let mut msg_and_side = Vec::new(); msg_and_side.push(match side { Side::A => 0x41, // 'A' Side::B => 0x42, // 'B' Side::Symmetric => 0x53, // 'S' }); msg_and_side.extend_from_slice(&msg1); ( SPAKE2 { side, xy_scalar, password_vec, // string id_a: id_a_copy, id_b: id_b_copy, id_s: id_s_copy, msg1: msg1.clone(), password_scalar, // scalar }, msg_and_side, ) } fn start_a_internal( password: &Password, id_a: &Identity, id_b: &Identity, xy_scalar: G::Scalar, ) -> (SPAKE2, Vec) { Self::start_internal( Side::A, &password, &id_a, &id_b, &Identity::new(b""), xy_scalar, ) } fn start_b_internal( password: &Password, id_a: &Identity, id_b: &Identity, xy_scalar: G::Scalar, ) -> (SPAKE2, Vec) { Self::start_internal( Side::B, &password, &id_a, &id_b, &Identity::new(b""), xy_scalar, ) } fn start_symmetric_internal( password: &Password, id_s: &Identity, xy_scalar: G::Scalar, ) -> (SPAKE2, Vec) { Self::start_internal( Side::Symmetric, &password, &Identity::new(b""), &Identity::new(b""), &id_s, xy_scalar, ) } pub fn start_a(password: &Password, id_a: &Identity, id_b: &Identity) -> (SPAKE2, Vec) { let mut cspring: OsRng = OsRng::new().unwrap(); let xy_scalar: G::Scalar = G::random_scalar(&mut cspring); Self::start_a_internal(&password, &id_a, &id_b, xy_scalar) } pub fn start_b(password: &Password, id_a: &Identity, id_b: &Identity) -> (SPAKE2, Vec) { let mut cspring: OsRng = OsRng::new().unwrap(); let xy_scalar: G::Scalar = G::random_scalar(&mut cspring); Self::start_b_internal(&password, &id_a, &id_b, xy_scalar) } pub fn start_symmetric(password: &Password, id_s: &Identity) -> (SPAKE2, Vec) { let mut cspring: OsRng = OsRng::new().unwrap(); let xy_scalar: G::Scalar = G::random_scalar(&mut cspring); Self::start_symmetric_internal(&password, &id_s, xy_scalar) } pub fn finish(self, msg2: &[u8]) -> Result, SPAKEErr> { if msg2.len() != 1 + G::element_length() { return Err(SPAKEErr { kind: ErrorType::WrongLength, }); } let msg_side = msg2[0]; match self.side { Side::A => match msg_side { 0x42 => (), // 'B' _ => { return Err(SPAKEErr { kind: ErrorType::BadSide, }) } }, Side::B => match msg_side { 0x41 => (), // 'A' _ => { return Err(SPAKEErr { kind: ErrorType::BadSide, }) } }, Side::Symmetric => match msg_side { 0x53 => (), // 'S' _ => { return Err(SPAKEErr { kind: ErrorType::BadSide, }) } }, } let msg2_element = match G::bytes_to_element(&msg2[1..]) { Some(x) => x, None => { return Err(SPAKEErr { kind: ErrorType::CorruptMessage, }) } }; // a: K = (Y+N*(-pw))*x // b: K = (X+M*(-pw))*y let unblinding = match self.side { Side::A => G::const_n(), Side::B => G::const_m(), Side::Symmetric => G::const_s(), }; let tmp1 = G::scalarmult(&unblinding, &G::scalar_neg(&self.password_scalar)); let tmp2 = G::add(&msg2_element, &tmp1); let key_element = G::scalarmult(&tmp2, &self.xy_scalar); let key_bytes = G::element_to_bytes(&key_element); // key = H(H(pw) + H(idA) + H(idB) + X + Y + K) //transcript = b"".join([sha256(pw).digest(), // sha256(idA).digest(), sha256(idB).digest(), // X_msg, Y_msg, K_bytes]) //key = sha256(transcript).digest() // note that both sides must use the same order Ok(match self.side { Side::A => ed25519_hash_ab( &self.password_vec, &self.id_a, &self.id_b, self.msg1.as_slice(), &msg2[1..], &key_bytes, ), Side::B => ed25519_hash_ab( &self.password_vec, &self.id_a, &self.id_b, &msg2[1..], self.msg1.as_slice(), &key_bytes, ), Side::Symmetric => ed25519_hash_symmetric( &self.password_vec, &self.id_s, &self.msg1, &msg2[1..], &key_bytes, ), }) } } fn maybe_utf8(s: &[u8]) -> String { match String::from_utf8(s.to_vec()) { Ok(m) => format!("(s={})", m), Err(_) => format!("(hex={})", hex::encode(s)), } } impl fmt::Debug for SPAKE2 { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!( f, "SPAKE2(G=?, side={:?}, idA={}, idB={}, idS={})", self.side, maybe_utf8(&self.id_a), maybe_utf8(&self.id_b), maybe_utf8(&self.id_s) ) } } #[cfg(test)] mod tests;