aboutsummaryrefslogtreecommitdiff
path: root/include/vector2d.h
diff options
context:
space:
mode:
authorcutealien <cutealien@dfc29bdd-3216-0410-991c-e03cc46cb475>2020-01-03 19:05:16 +0000
committercutealien <cutealien@dfc29bdd-3216-0410-991c-e03cc46cb475>2020-01-03 19:05:16 +0000
commit2ae2a551a6290f46734307bbfdafea4b1a2cf2ba (patch)
treeba2f0b468640e44899fed3df2d4cc58795f4a003 /include/vector2d.h
downloadirrlicht-2ae2a551a6290f46734307bbfdafea4b1a2cf2ba.tar.xz
Merging r5975 through r6036 from trunk to ogl-es branch.
GLES drivers adapted, but only did make compile-tests. git-svn-id: svn://svn.code.sf.net/p/irrlicht/code/branches/ogl-es@6038 dfc29bdd-3216-0410-991c-e03cc46cb475
Diffstat (limited to 'include/vector2d.h')
-rw-r--r--include/vector2d.h422
1 files changed, 422 insertions, 0 deletions
diff --git a/include/vector2d.h b/include/vector2d.h
new file mode 100644
index 0000000..2d28ce7
--- /dev/null
+++ b/include/vector2d.h
@@ -0,0 +1,422 @@
+// Copyright (C) 2002-2012 Nikolaus Gebhardt
+// This file is part of the "Irrlicht Engine".
+// For conditions of distribution and use, see copyright notice in irrlicht.h
+
+#ifndef __IRR_POINT_2D_H_INCLUDED__
+#define __IRR_POINT_2D_H_INCLUDED__
+
+#include "irrMath.h"
+#include "dimension2d.h"
+
+namespace irr
+{
+namespace core
+{
+
+
+//! 2d vector template class with lots of operators and methods.
+/** As of Irrlicht 1.6, this class supersedes position2d, which should
+ be considered deprecated. */
+template <class T>
+class vector2d
+{
+public:
+ //! Default constructor (null vector)
+ vector2d() : X(0), Y(0) {}
+ //! Constructor with two different values
+ vector2d(T nx, T ny) : X(nx), Y(ny) {}
+ //! Constructor with the same value for both members
+ explicit vector2d(T n) : X(n), Y(n) {}
+ //! Copy constructor
+ vector2d(const vector2d<T>& other) : X(other.X), Y(other.Y) {}
+
+ vector2d(const dimension2d<T>& other) : X(other.Width), Y(other.Height) {}
+
+ // operators
+
+ vector2d<T> operator-() const { return vector2d<T>(-X, -Y); }
+
+ vector2d<T>& operator=(const vector2d<T>& other) { X = other.X; Y = other.Y; return *this; }
+
+ vector2d<T>& operator=(const dimension2d<T>& other) { X = other.Width; Y = other.Height; return *this; }
+
+ vector2d<T> operator+(const vector2d<T>& other) const { return vector2d<T>(X + other.X, Y + other.Y); }
+ vector2d<T> operator+(const dimension2d<T>& other) const { return vector2d<T>(X + other.Width, Y + other.Height); }
+ vector2d<T>& operator+=(const vector2d<T>& other) { X+=other.X; Y+=other.Y; return *this; }
+ vector2d<T> operator+(const T v) const { return vector2d<T>(X + v, Y + v); }
+ vector2d<T>& operator+=(const T v) { X+=v; Y+=v; return *this; }
+ vector2d<T>& operator+=(const dimension2d<T>& other) { X += other.Width; Y += other.Height; return *this; }
+
+ vector2d<T> operator-(const vector2d<T>& other) const { return vector2d<T>(X - other.X, Y - other.Y); }
+ vector2d<T> operator-(const dimension2d<T>& other) const { return vector2d<T>(X - other.Width, Y - other.Height); }
+ vector2d<T>& operator-=(const vector2d<T>& other) { X-=other.X; Y-=other.Y; return *this; }
+ vector2d<T> operator-(const T v) const { return vector2d<T>(X - v, Y - v); }
+ vector2d<T>& operator-=(const T v) { X-=v; Y-=v; return *this; }
+ vector2d<T>& operator-=(const dimension2d<T>& other) { X -= other.Width; Y -= other.Height; return *this; }
+
+ vector2d<T> operator*(const vector2d<T>& other) const { return vector2d<T>(X * other.X, Y * other.Y); }
+ vector2d<T>& operator*=(const vector2d<T>& other) { X*=other.X; Y*=other.Y; return *this; }
+ vector2d<T> operator*(const T v) const { return vector2d<T>(X * v, Y * v); }
+ vector2d<T>& operator*=(const T v) { X*=v; Y*=v; return *this; }
+
+ vector2d<T> operator/(const vector2d<T>& other) const { return vector2d<T>(X / other.X, Y / other.Y); }
+ vector2d<T>& operator/=(const vector2d<T>& other) { X/=other.X; Y/=other.Y; return *this; }
+ vector2d<T> operator/(const T v) const { return vector2d<T>(X / v, Y / v); }
+ vector2d<T>& operator/=(const T v) { X/=v; Y/=v; return *this; }
+
+ T& operator [](u32 index)
+ {
+ _IRR_DEBUG_BREAK_IF(index>1) // access violation
+
+ return *(&X+index);
+ }
+
+ const T& operator [](u32 index) const
+ {
+ _IRR_DEBUG_BREAK_IF(index>1) // access violation
+
+ return *(&X+index);
+ }
+
+ //! sort in order X, Y. Equality with rounding tolerance.
+ bool operator<=(const vector2d<T>&other) const
+ {
+ return (X<other.X || core::equals(X, other.X)) ||
+ (core::equals(X, other.X) && (Y<other.Y || core::equals(Y, other.Y)));
+ }
+
+ //! sort in order X, Y. Equality with rounding tolerance.
+ bool operator>=(const vector2d<T>&other) const
+ {
+ return (X>other.X || core::equals(X, other.X)) ||
+ (core::equals(X, other.X) && (Y>other.Y || core::equals(Y, other.Y)));
+ }
+
+ //! sort in order X, Y. Difference must be above rounding tolerance.
+ bool operator<(const vector2d<T>&other) const
+ {
+ return (X<other.X && !core::equals(X, other.X)) ||
+ (core::equals(X, other.X) && Y<other.Y && !core::equals(Y, other.Y));
+ }
+
+ //! sort in order X, Y. Difference must be above rounding tolerance.
+ bool operator>(const vector2d<T>&other) const
+ {
+ return (X>other.X && !core::equals(X, other.X)) ||
+ (core::equals(X, other.X) && Y>other.Y && !core::equals(Y, other.Y));
+ }
+
+ bool operator==(const vector2d<T>& other) const { return equals(other); }
+ bool operator!=(const vector2d<T>& other) const { return !equals(other); }
+
+ // functions
+
+ //! Checks if this vector equals the other one.
+ /** Takes floating point rounding errors into account.
+ \param other Vector to compare with.
+ \param tolerance Epsilon value for both - comparing X and Y.
+ \return True if the two vector are (almost) equal, else false. */
+ bool equals(const vector2d<T>& other, const T tolerance = (T)ROUNDING_ERROR_f32 ) const
+ {
+ return core::equals(X, other.X, tolerance) && core::equals(Y, other.Y, tolerance);
+ }
+
+ vector2d<T>& set(T nx, T ny) {X=nx; Y=ny; return *this; }
+ vector2d<T>& set(const vector2d<T>& p) { X=p.X; Y=p.Y; return *this; }
+
+ //! Gets the length of the vector.
+ /** \return The length of the vector. */
+ T getLength() const { return core::squareroot( X*X + Y*Y ); }
+
+ //! Get the squared length of this vector
+ /** This is useful because it is much faster than getLength().
+ \return The squared length of the vector. */
+ T getLengthSQ() const { return X*X + Y*Y; }
+
+ //! Get the dot product of this vector with another.
+ /** \param other Other vector to take dot product with.
+ \return The dot product of the two vectors. */
+ T dotProduct(const vector2d<T>& other) const
+ {
+ return X*other.X + Y*other.Y;
+ }
+
+ //! check if this vector is parallel to another vector
+ bool nearlyParallel( const vector2d<T> & other, const T factor = relativeErrorFactor<T>()) const
+ {
+ // https://eagergames.wordpress.com/2017/04/01/fast-parallel-lines-and-vectors-test/
+ // if a || b then a.x/a.y = b.x/b.y (similiar triangles)
+ // if a || b then either both x are 0 or both y are 0.
+
+ return equalsRelative( X*other.Y, other.X* Y, factor)
+ && // a bit counterintuitive, but makes sure that
+ // only y or only x are 0, and at same time deals
+ // with the case where one vector is zero vector.
+ (X*other.X + Y*other.Y) != 0;
+ }
+
+ //! Gets distance from another point.
+ /** Here, the vector is interpreted as a point in 2-dimensional space.
+ \param other Other vector to measure from.
+ \return Distance from other point. */
+ T getDistanceFrom(const vector2d<T>& other) const
+ {
+ return vector2d<T>(X - other.X, Y - other.Y).getLength();
+ }
+
+ //! Returns squared distance from another point.
+ /** Here, the vector is interpreted as a point in 2-dimensional space.
+ \param other Other vector to measure from.
+ \return Squared distance from other point. */
+ T getDistanceFromSQ(const vector2d<T>& other) const
+ {
+ return vector2d<T>(X - other.X, Y - other.Y).getLengthSQ();
+ }
+
+ //! rotates the point anticlockwise around a center by an amount of degrees.
+ /** \param degrees Amount of degrees to rotate by, anticlockwise.
+ \param center Rotation center.
+ \return This vector after transformation. */
+ vector2d<T>& rotateBy(f64 degrees, const vector2d<T>& center=vector2d<T>())
+ {
+ degrees *= DEGTORAD64;
+ const f64 cs = cos(degrees);
+ const f64 sn = sin(degrees);
+
+ X -= center.X;
+ Y -= center.Y;
+
+ set((T)(X*cs - Y*sn), (T)(X*sn + Y*cs));
+
+ X += center.X;
+ Y += center.Y;
+ return *this;
+ }
+
+ //! Normalize the vector.
+ /** The null vector is left untouched.
+ \return Reference to this vector, after normalization. */
+ vector2d<T>& normalize()
+ {
+ f32 length = (f32)(X*X + Y*Y);
+ if ( length == 0 )
+ return *this;
+ length = core::reciprocal_squareroot ( length );
+ X = (T)(X * length);
+ Y = (T)(Y * length);
+ return *this;
+ }
+
+ //! Calculates the angle of this vector in degrees in the trigonometric sense.
+ /** 0 is to the right (3 o'clock), values increase counter-clockwise.
+ This method has been suggested by Pr3t3nd3r.
+ \return Returns a value between 0 and 360. */
+ f64 getAngleTrig() const
+ {
+ if (Y == 0)
+ return X < 0 ? 180 : 0;
+ else
+ if (X == 0)
+ return Y < 0 ? 270 : 90;
+
+ if ( Y > 0)
+ if (X > 0)
+ return atan((irr::f64)Y/(irr::f64)X) * RADTODEG64;
+ else
+ return 180.0-atan((irr::f64)Y/-(irr::f64)X) * RADTODEG64;
+ else
+ if (X > 0)
+ return 360.0-atan(-(irr::f64)Y/(irr::f64)X) * RADTODEG64;
+ else
+ return 180.0+atan(-(irr::f64)Y/-(irr::f64)X) * RADTODEG64;
+ }
+
+ //! Calculates the angle of this vector in degrees in the counter trigonometric sense.
+ /** 0 is to the right (3 o'clock), values increase clockwise.
+ \return Returns a value between 0 and 360. */
+ inline f64 getAngle() const
+ {
+ if (Y == 0) // corrected thanks to a suggestion by Jox
+ return X < 0 ? 180 : 0;
+ else if (X == 0)
+ return Y < 0 ? 90 : 270;
+
+ // don't use getLength here to avoid precision loss with s32 vectors
+ // avoid floating-point trouble as sqrt(y*y) is occasionally larger than y, so clamp
+ const f64 tmp = core::clamp(Y / sqrt((f64)(X*X + Y*Y)), -1.0, 1.0);
+ const f64 angle = atan( core::squareroot(1 - tmp*tmp) / tmp) * RADTODEG64;
+
+ if (X>0 && Y>0)
+ return angle + 270;
+ else
+ if (X>0 && Y<0)
+ return angle + 90;
+ else
+ if (X<0 && Y<0)
+ return 90 - angle;
+ else
+ if (X<0 && Y>0)
+ return 270 - angle;
+
+ return angle;
+ }
+
+ //! Calculates the angle between this vector and another one in degree.
+ /** \param b Other vector to test with.
+ \return Returns a value between 0 and 90. */
+ inline f64 getAngleWith(const vector2d<T>& b) const
+ {
+ f64 tmp = (f64)(X*b.X + Y*b.Y);
+
+ if (tmp == 0.0)
+ return 90.0;
+
+ tmp = tmp / core::squareroot((f64)((X*X + Y*Y) * (b.X*b.X + b.Y*b.Y)));
+ if (tmp < 0.0)
+ tmp = -tmp;
+ if ( tmp > 1.0 ) // avoid floating-point trouble
+ tmp = 1.0;
+
+ return atan(sqrt(1 - tmp*tmp) / tmp) * RADTODEG64;
+ }
+
+ //! Returns if this vector interpreted as a point is on a line between two other points.
+ /** It is assumed that the point is on the line.
+ \param begin Beginning vector to compare between.
+ \param end Ending vector to compare between.
+ \return True if this vector is between begin and end, false if not. */
+ bool isBetweenPoints(const vector2d<T>& begin, const vector2d<T>& end) const
+ {
+ // . end
+ // /
+ // /
+ // /
+ // . begin
+ // -
+ // -
+ // . this point (am I inside or outside)?
+ //
+ if (begin.X != end.X)
+ {
+ return ((begin.X <= X && X <= end.X) ||
+ (begin.X >= X && X >= end.X));
+ }
+ else
+ {
+ return ((begin.Y <= Y && Y <= end.Y) ||
+ (begin.Y >= Y && Y >= end.Y));
+ }
+ }
+
+ //! Creates an interpolated vector between this vector and another vector.
+ /** \param other The other vector to interpolate with.
+ \param d Interpolation value between 0.0f (all the other vector) and 1.0f (all this vector).
+ Note that this is the opposite direction of interpolation to getInterpolated_quadratic()
+ \return An interpolated vector. This vector is not modified. */
+ vector2d<T> getInterpolated(const vector2d<T>& other, f64 d) const
+ {
+ const f64 inv = 1.0f - d;
+ return vector2d<T>((T)(other.X*inv + X*d), (T)(other.Y*inv + Y*d));
+ }
+
+ //! Creates a quadratically interpolated vector between this and two other vectors.
+ /** \param v2 Second vector to interpolate with.
+ \param v3 Third vector to interpolate with (maximum at 1.0f)
+ \param d Interpolation value between 0.0f (all this vector) and 1.0f (all the 3rd vector).
+ Note that this is the opposite direction of interpolation to getInterpolated() and interpolate()
+ \return An interpolated vector. This vector is not modified. */
+ vector2d<T> getInterpolated_quadratic(const vector2d<T>& v2, const vector2d<T>& v3, f64 d) const
+ {
+ // this*(1-d)*(1-d) + 2 * v2 * (1-d) + v3 * d * d;
+ const f64 inv = 1.0f - d;
+ const f64 mul0 = inv * inv;
+ const f64 mul1 = 2.0f * d * inv;
+ const f64 mul2 = d * d;
+
+ return vector2d<T> ( (T)(X * mul0 + v2.X * mul1 + v3.X * mul2),
+ (T)(Y * mul0 + v2.Y * mul1 + v3.Y * mul2));
+ }
+
+ /*! Test if this point and another 2 points taken as triplet
+ are colinear, clockwise, anticlockwise. This can be used also
+ to check winding order in triangles for 2D meshes.
+ \return 0 if points are colinear, 1 if clockwise, 2 if anticlockwise
+ */
+ s32 checkOrientation( const vector2d<T> & b, const vector2d<T> & c) const
+ {
+ // Example of clockwise points
+ //
+ // ^ Y
+ // | A
+ // | . .
+ // | . .
+ // | C.....B
+ // +---------------> X
+
+ T val = (b.Y - Y) * (c.X - b.X) -
+ (b.X - X) * (c.Y - b.Y);
+
+ if (val == 0) return 0; // colinear
+
+ return (val > 0) ? 1 : 2; // clock or counterclock wise
+ }
+
+ /*! Returns true if points (a,b,c) are clockwise on the X,Y plane*/
+ inline bool areClockwise( const vector2d<T> & b, const vector2d<T> & c) const
+ {
+ T val = (b.Y - Y) * (c.X - b.X) -
+ (b.X - X) * (c.Y - b.Y);
+
+ return val > 0;
+ }
+
+ /*! Returns true if points (a,b,c) are counterclockwise on the X,Y plane*/
+ inline bool areCounterClockwise( const vector2d<T> & b, const vector2d<T> & c) const
+ {
+ T val = (b.Y - Y) * (c.X - b.X) -
+ (b.X - X) * (c.Y - b.Y);
+
+ return val < 0;
+ }
+
+ //! Sets this vector to the linearly interpolated vector between a and b.
+ /** \param a first vector to interpolate with, maximum at 1.0f
+ \param b second vector to interpolate with, maximum at 0.0f
+ \param d Interpolation value between 0.0f (all vector b) and 1.0f (all vector a)
+ Note that this is the opposite direction of interpolation to getInterpolated_quadratic()
+ */
+ vector2d<T>& interpolate( const vector2d<T>& a, const vector2d<T>& b, f64 d)
+ {
+ X = (T)((f64)b.X + ( ( a.X - b.X ) * d ));
+ Y = (T)((f64)b.Y + ( ( a.Y - b.Y ) * d ));
+ return *this;
+ }
+
+ //! X coordinate of vector.
+ T X;
+
+ //! Y coordinate of vector.
+ T Y;
+};
+
+ //! Typedef for f32 2d vector.
+ typedef vector2d<f32> vector2df;
+
+ //! Typedef for integer 2d vector.
+ typedef vector2d<s32> vector2di;
+
+ template<class S, class T>
+ vector2d<T> operator*(const S scalar, const vector2d<T>& vector) { return vector*scalar; }
+
+ // These methods are declared in dimension2d, but need definitions of vector2d
+ template<class T>
+ dimension2d<T>::dimension2d(const vector2d<T>& other) : Width(other.X), Height(other.Y) { }
+
+ template<class T>
+ bool dimension2d<T>::operator==(const vector2d<T>& other) const { return Width == other.X && Height == other.Y; }
+
+} // end namespace core
+} // end namespace irr
+
+#endif
+