1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
|
--[[
Implemented as described here:
http://flafla2.github.io/2014/08/09/perlinnoise.html
]]--
local perlin = {}
perlin.p = {}
local bit32 = {}
function bit32.band(a, b)
local result = 0
local bitval = 1
while a > 0 and b > 0 do
if a % 2 == 1 and b % 2 == 1 then -- test the rightmost bits
result = result + bitval -- set the current bit
end
bitval = bitval * 2 -- shift left
a = math.floor(a/2) -- shift right
b = math.floor(b/2)
end
return result
end
-- Hash lookup table as defined by Ken Perlin
-- This is a randomly arranged array of all numbers from 0-255 inclusive
local permutation = {151,160,137,91,90,15,
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180
}
-- p is used to hash unit cube coordinates to [0, 255]
for i=0,255 do
-- Convert to 0 based index table
perlin.p[i] = permutation[i+1]
-- Repeat the array to avoid buffer overflow in hash function
perlin.p[i+256] = permutation[i+1]
end
-- Return range: [-1, 1]
function perlin:noise(x, y, z)
y = y or 0
z = z or 0
-- Calculate the "unit cube" that the point asked will be located in
local xi = bit32.band(math.floor(x),255)
local yi = bit32.band(math.floor(y),255)
local zi = bit32.band(math.floor(z),255)
-- Next we calculate the location (from 0 to 1) in that cube
x = x - math.floor(x)
y = y - math.floor(y)
z = z - math.floor(z)
-- We also fade the location to smooth the result
local u = self.fade(x)
local v = self.fade(y)
local w = self.fade(z)
-- Hash all 8 unit cube coordinates surrounding input coordinate
local p = self.p
local A, AA, AB, AAA, ABA, AAB, ABB, B, BA, BB, BAA, BBA, BAB, BBB
A = p[xi ] + yi
AA = p[A ] + zi
AB = p[A+1 ] + zi
AAA = p[ AA ]
ABA = p[ AB ]
AAB = p[ AA+1 ]
ABB = p[ AB+1 ]
B = p[xi+1] + yi
BA = p[B ] + zi
BB = p[B+1 ] + zi
BAA = p[ BA ]
BBA = p[ BB ]
BAB = p[ BA+1 ]
BBB = p[ BB+1 ]
-- Take the weighted average between all 8 unit cube coordinates
return self.lerp(w,
self.lerp(v,
self.lerp(u,
self:grad(AAA,x,y,z),
self:grad(BAA,x-1,y,z)
),
self.lerp(u,
self:grad(ABA,x,y-1,z),
self:grad(BBA,x-1,y-1,z)
)
),
self.lerp(v,
self.lerp(u,
self:grad(AAB,x,y,z-1), self:grad(BAB,x-1,y,z-1)
),
self.lerp(u,
self:grad(ABB,x,y-1,z-1), self:grad(BBB,x-1,y-1,z-1)
)
)
)
end
-- Gradient function finds dot product between pseudorandom gradient vector
-- and the vector from input coordinate to a unit cube vertex
perlin.dot_product = {
[0x0]=function(x,y,z) return x + y end,
[0x1]=function(x,y,z) return -x + y end,
[0x2]=function(x,y,z) return x - y end,
[0x3]=function(x,y,z) return -x - y end,
[0x4]=function(x,y,z) return x + z end,
[0x5]=function(x,y,z) return -x + z end,
[0x6]=function(x,y,z) return x - z end,
[0x7]=function(x,y,z) return -x - z end,
[0x8]=function(x,y,z) return y + z end,
[0x9]=function(x,y,z) return -y + z end,
[0xA]=function(x,y,z) return y - z end,
[0xB]=function(x,y,z) return -y - z end,
[0xC]=function(x,y,z) return y + x end,
[0xD]=function(x,y,z) return -y + z end,
[0xE]=function(x,y,z) return y - x end,
[0xF]=function(x,y,z) return -y - z end
}
function perlin:grad(hash, x, y, z)
return self.dot_product[bit32.band(hash,0xF)](x,y,z)
end
-- Fade function is used to smooth final output
function perlin.fade(t)
return t * t * t * (t * (t * 6 - 15) + 10)
end
function perlin.lerp(t, a, b)
return a + t * (b - a)
end
return perlin
|